読者です 読者をやめる 読者になる 読者になる

倭算数理研究所

科学・数学・学習関連の記事を、「倭マン日記」とは別に書いていくのだ!

階乗冪の和の公式

以下のような積の和を一般に与える公式を導きます。 参考 『級数・フーリエ解析 (岩波 数学公式 2)』 概要後でもう少し一般化した場合を導出しますが、 の場合に算数っぽく導出しておきます。 まずは の場合。 角括弧内の第1項内の1つ目の項 と第2項内の2つ…

逆双曲線関数を対数関数で表す

双曲線関数は基本的に単なる指数関数なので(『もしも高校で双曲線関数をやったなら (1) : 双曲線関数の定義と相互関係』参照)、逆双曲線関数は対数関数で表すことができます。 を対数関数で表す とおくと 、これを指数関数で書き換えると つまり となりま…

2次無理関数のとある積分公式

この記事では、以下の積分 を実行してみます。 結果が実数関数であることを要請すると、 の値によって の範囲に制限が出てくる場合があるのでちょっと面倒。 後のために、被積分関数の平方根の中を平方完成しておきましょう: では、いくつかの場合に分けて…

二項係数を含む級数の公式とパスカルの三角形 案外、奥が深いようで

『級数・フーリエ解析 (岩波 数学公式 2)』に載ってる、二項係数を1つ含む級数の公式を導いてみます。 前々回、前回に二項係数を2つ含む級数の公式をあれこれ導いたので、ちょっと順番が前後しますが。確認二項係数は階乗を使って以下のように定義されるので…

二項係数の自乗の和に関する公式

前回、二項係数の加法定理(加法公式)を使って、『級数・フーリエ解析 (岩波 数学公式 2)』に載っている、二項係数を2つ含む級数の公式をいくつか導きました。 ただ、いくつか加法定理からは導けない公式があったので、今回はそれらを別の方法で導いてみま…

二項係数の加法公式を導く

今回は二項係数(binomial coefficient)の第1引数に対する加法公式(加法定理?)を導きます。 この公式を使って、二項係数を2つ含む級数をあれこれ計算できます。 前回の記事『二項係数の定義を負の係数に拡張する』では、第1引数が整数(以下では )の二…

二項係数の定義を負の係数に拡張する

前回の記事で、『級数・フーリエ解析 (岩波 数学公式 2)』に載ってる階乗や二項係数を含む級数の公式をいくつか導きましたが、実は という公式を導けなくて挫折してました、ハイ、スイマセン。 で、あれこれ思考&調査したところ、どうも二項係数を負の値に…

階乗を含む級数あれこれ

ちょっと、とある公式を導くために二項係数を含む級数をあれこれ考えてたんですが、どうも導き方がよく分からなかったので、階乗や二項係数を含む級数の公式を片っ端から導いてみます。 公式は『級数・フーリエ解析 (岩波 数学公式 2)』に載ってるもの。 以…

続・一般化された超幾何関数はどのくらい一般化されているのか? ~p=1~

前回に引き続き、いろいろな関数を一般化された超幾何関数で表してみましょう。 今回は の場合。 一般化された超幾何関数の定義は以下のようでした: また、以下のような等式も前回導きました。 これに加えて、後で使う似たような公式をいくつか: の場合の…

一般化された超幾何関数はどのくらい一般化されているのか?

前回、一般化された超幾何関数という関数の定義を見ました: 今回は、いろいろな関数がこの一般化された超幾何関数を使って表すことができることを見ていきましょう。ポッホハマー記号の値あれこれまず、後で使うポッホハマー記号と階乗などの関係式を導いて…