読者です 読者をやめる 読者になる 読者になる

倭算数理研究所

科学・数学・学習関連の記事を、「倭マン日記」とは別に書いていくのだ!

重力

懸垂曲線の方程式を導く

ひもの両端を持って垂らしたときにできる曲線を懸垂曲線(wikipedia:カテナリー曲線 catenary)といいますが、この曲線の方程式を導いてみます。 結果は双曲線関数の1つ を使って表されます。高校時代にどこかで導出を読んだ覚えがあるんですが、その過程で…

2次元の Laplace - Runge - Lenz ベクトル

古典力学のいろいろな系で運動方程式を解いていくシリーズ(目次)。 今回は、ケプラー問題でエネルギーや角運動量以外に保存される Laplace - Runge - Lenz ベクトル(以下、ラプラス・ベクトル)の2次元版を見ていきます。『ケプラー問題のある保存ベクト…

ケプラー問題のある保存ベクトル

古典力学のいろいろな系で運動方程式を解いていくシリーズ(目次)。 ケプラー問題ではエネルギーと角運動量以外に保存されるベクトルが存在することが知られています。 今回は簡単にこのベクトルについて見ていきましょう。 このベクトルを使うと比較的簡単…

『君の名は。』の彗星は反重力物質である可能性

こういう系の記事を書くときは大体機を逸している気がしますが、DVD/Blu-ray の発売とか地上波放送とかあるだろうから書いときます。 ちなみに、拙者は『君の名は。』を観てないので劇中の設定とか全く分からず書いてます。前置き的記事はこちら。 jin115.co…

2次元のケプラー問題 ~双曲線軌道の場合~

古典力学のいろいろな系で運動方程式を解いていくシリーズ(目次)。 今回はケプラー問題で の場合の運動を求めます。 このときの質点の軌跡は双曲線となります。動径方向の運動『2次元のケプラー問題』より、動径 と時刻 との関係は以下で与えられるのでし…

2次元のケプラー問題 ~楕円軌道の場合~

古典力学のいろいろな系で運動方程式を解いていくシリーズ(目次)。 今回は『2次元のケプラー問題』記事の続きで、 の場合を行います。 このとき、離心率 は となり、楕円軌道となります。動径方向の運動『2次元のケプラー問題』より、動径 と時刻 は で関…

2次元のケプラー問題 ~放物線軌道の場合~

古典力学のいろいろな系で運動方程式を解いていくシリーズ(目次)。 今回はケプラー問題で の場合の質点の運動を求めます。 この場合の軌道は放物線になります。放物線軌道の方程式『2次元のケプラー問題の軌跡』より、放物線軌道の方程式は で与えられます…

2次元のケプラー問題

古典力学のいろいろな系で運動方程式を解いていくシリーズ(目次)。 今回は以前に見た中心力ポテンシャルの問題を解く方法で、力が逆2乗法則に従うケプラー問題を解いてみます。運動方程式を解く手順として、まず座標等を時間の関数として求め、その後時間…

2次元のケプラー問題の軌跡

古典力学のいろいろな系で運動方程式を解いていくシリーズ(目次)。 今回は『中心力ポテンシャル中での質点の軌跡 ~2次元~』の方法を使って、ケプラー問題の軌跡を求めてみましょう。この記事の内容 この記事の内容 参考 ケプラー問題のポテンシャル 積分…

安倍マリオが東京からリオまでいくのにかかる時間を計算してみる

ちょっと機を逸した気もしますが、リオオリンピックの閉会式で安倍マリオが東京からリオデジャネイロまで地球内部を貫通して行くのにどれくらいの時間がかかったのかを計算してみましょう。 まぁ、結構単純化したモデルなので参考程度と思ってくださいまし。…

球対称な質量分布が作る重力ポテンシャル

ちょっと所用で重力ポテンシャルを計算する必要ができたので、学部の演習問題でやった積分の計算を久し振りにやり直してみました。 どちらかというと電磁気学で静電ポテンシャルの計算としてやった記憶の方が強いですが、まぁ全く同じ計算でした。質点と質量…