古典力学のいろいろな系で運動方程式を解いていくシリーズ(目次)。 今回はケプラー問題で の場合の運動を求めます。 このときの質点の軌跡は双曲線となります。
動径方向の運動
『2次元のケプラー問題』より、動径
『2次元のケプラー問題の軌跡』で導入した を用いて
を書き換えると
ここで平方根の中が に比例するように、変数
を以下のように導入しましょう:
この は楕円軌道での離心近点離角に対応するもので、
のとき近日点の動径距離(アプス距離)
に等しくなります。 この変数変換を
に施して
だったので
となります。 初期条件として のとき
(このとき
) となることを課すと
となります。 よって
形式的に動径を時刻の関数として表す
楕円軌道の場合にやったように、双曲線軌道の場合も上記の関係を形式的に動径
とおきましょう。 添字の「+」は の意。 この
は楕円軌道の場合の
と比べて
と
が変わってるだけです。 この
を使って、前節の関係式は
と書けます。 ここで、右辺の の関数
の逆関数を
と定義しましょう:
このとき を時刻の関数として
と書けます。
だったので、結局
を得ます。
偏角方向の運動
次は偏角方向の運動を求めます。 ただし、次節でやるように、上記で求めた動径方向の運動と軌跡の方程式を使って動径方向の運動を求める方がかなり簡単です。『2次元のケプラー問題』より、偏角 と時刻
の関係は以下で与えられるのでした:
双曲線軌道では であることを使っています。 また、
の被積分関数の分母は少し書き換えています。 では
の
積分を計算していきましょう。 分母が
に比例するように、変数
を
で導入しましょう。 このとき
ここで
なので
となります。 を使うと
よって( で
となる初期条件も課して)
さらに を使うと
となります。 まぁそれなりな形にまとまりましたが、これを逆に解くのは無理そうなので、次節では別の方法で偏角を時刻の関数として表す方法をみていきます。
別の形
前節の方法とは別に、動径方向の運動と軌跡の方程式から偏角方向の運動を求めて見ましょう。 『2次元のケプラー問題の軌跡』より、双曲線軌道の場合の軌跡の方程式は
で与えられるのでした。 これを について解くと
ここに、上記で求めた動径方向の運動 を代入すると
を得ます。
まとめ
以上の結果をまとめると
ここで
です。

- 作者: ゴールドスタイン,サーフコ,ポール,Herbert Goldstein,John Safko,Charles Poole,矢野忠,渕崎員弘,江沢康生
- 出版社/メーカー: 吉岡書店
- 発売日: 2006/07
- メディア: 単行本
- クリック: 7回
- この商品を含むブログ (8件) を見る

- 作者: ゴールドスタイン,矢野忠
- 出版社/メーカー: 吉岡書店
- 発売日: 2009/03
- メディア: 単行本
- クリック: 3回
- この商品を含むブログを見る