倭算数理研究所

科学・数学・学習関連の記事を、「倭マン日記」とは別に書いていくのだ!

『Quantum Computing: A Gentle Introduction』の演習問題を解く 3.10

Quantum Computing: A Gentle Introduction (Scientific and Engineering Computation) (English Edition)

Quantum Computing: A Gentle Introduction (Scientific and Engineering Computation) (English Edition)

目次はこちら

Exercise 3.10. Show that for any orthonormal basis  { B = \{ |\beta_1\rangle,\,|\beta_2\rangle,\, ... \,|\beta_n\rangle \} } and vectors  { |v\rangle = a_1|\beta_1\rangle + a_2|\beta_2\rangle + \cdots + a_n|\beta_n\rangle } and  { |w\rangle = c_1|\beta_1\rangle + c_2|\beta_2\rangle + \cdots + c_n|\beta_n\rangle }

  • a. the inner product of  { |v\rangle } and  { |w\rangle } is  { \bar{c}_1a_1 + \bar{c}_2a_2 +  \cdots + \bar{c}_na_n }, and
  • b. the length squared of  { |v\rangle } is  { \left||v\rangle\right|^2 = \langle v|v \rangle = |a_1|^2 + |a_2|^2 + \cdots + |a_n|^2 }.

Write all steps in Dirac's bra/ket notation.

準備

 { |v\rangle,\,|w\rangle } はそれぞれ

  { \displaystyle\begin{align*}
  |v\rangle &= \sum_{i=1}^n a_i|\beta_i\rangle, &
  |w\rangle &= \sum_{i=1}^n c_i|\beta_i\rangle
\end{align*}}

また、 { \{|\beta_i\rangle\} } は正規直交基底なので

  { \displaystyle\begin{align*}
  \langle \beta_i | \beta_j \rangle = \delta_{ij}
\end{align*}}

を満たします。

a.

  { \displaystyle\begin{align*}
  \langle w | v\rangle
    &= \left(\sum_{i=1}^n c_i|\beta_i\rangle\right)^\dagger\sum_{j=1}^n a_j|\beta_j\rangle \\
    &= \sum_{i,j=1}^n \bar{c}_ia_j \langle \beta_i | \beta_j \rangle \\
    &= \sum_{i,j=1}^n \bar{c}_ia_j \delta_{ij} \\
    &= \sum_{i=1}^n \bar{c}_ia_i
\end{align*}}

b.
小問 a の結果より

  { \displaystyle\begin{align*}
  \langle v | v \rangle
    &= \sum_{i=1}^n \bar{a}_ia_i \\
    &= \sum_{i=1}^n |a_i|^2
\end{align*}}