高校数学
三角関数の公式を復習するシリーズ(目次)。 高校数学で三角関数を含む積分をあれこれ計算できるようになるには多少の演習が必要かと思いますが、問題集をやる前に のような各三角関数の冪乗の積分をある程度できるようになっておいた方がいいでしょう。 こ…
もう少し三角関数の公式シリーズ(目次)。 前回、余弦の 倍角の公式を導きましたが、基本的には同じ方法で正弦の 倍角の公式も導けます。 ただ、正弦の場合は が偶数か奇数かによって結構式が異なるので少々面倒です。 とは言え、タイトルに「導く」と付け…
もう少し三角関数の公式シリーズ(目次)。 前回はド・モアブルの公式を使って三角関数の 倍角の公式を導きましたが、そこで導いた公式では が混在した式になっていました。 今回は別の方法で もしくは にもう少し統一された公式を導きます。 できうる限り …
もう少し三角関数の公式シリーズ(目次)。 数年前に高校数学で複素数で学ぶことが拡充され(というか復活して)ド・モアブルの公式(ド・モアブルの定理)をやるようになりましたが、この公式はオイラーの公式を知ってると簡単に理解できます(むしろオイラ…
Twitter の TL 上に をどんどん微分していくツイートが流れてたのだが、こんな感じにやればいいんじゃないかという方法があるので書いてみます。準備 の微分は高校数学でやりますね(数学IIIなのでやらない人もいるかな)。 また、後で使うこんな公式も数学I…
高校数学では、定積分については偶関数・奇関数に対する便利な公式がありますね。 をそれぞれ偶関数、奇関数とする、つまり以下が成り立つとします: このとき、 を中点とする区間での定積分に対して次の公式が成り立ちます( は正の定数): 不定積分さて、…
ちょっと Twitter の TL である回転体の体積と面積の話を見かけたのですが、(あまりその TL での話の本筋とは関係はない)回転体の表面積の計算方法でちょっと気になったので確認記事を書き書き。高校数学(数学III)で、回転体の体積を積分で求める公式を…
ちょっと高校の頃にはあやふやだったなぁという回顧のエントリ。 指数法則や指数関数を考えるときに、底にどのような制限がつくかを整理してみます。 この記事中では、特に断らない限り自然数に0を含めます。1以上の自然数の指数 を実数、 を1以上の自然数と…
高校数学で線型代数(というか行列)をやってみようシリーズ(目次)。 前回はベクトル(座標)の変換から行列を導入しましたが、今回はその行列に対して定義される和や積などの演算を見ていきます。この記事の内容 この記事の内容 参考 合成変換と行列の積 …
数年前から高校数学で行列をやらなくなってグラフの回転ができなくなるなぁと思ってたんだけど*1、軌跡の問題だと思えば(言い張れば)今の高校数学の範囲内でグラフの回転を行うことができそうなので、実際にやってみます。 この記事内では回転は原点の周り…
数学Iで頂点が原点でない2次関数をやる際にグラフの平行移動をやりますが、どんなグラフに対しても使える平行移動の仕方はきちんとやろうとすると数学IIで習う軌跡を使った説明が必要かと思います(必ずしも軌跡を使わなければいけないというわけではなく、…
今回は正六面体(立方体)の表面積や体積など。 5つの正多面体の中で一番簡単。 粛々といきましょう。 幾何学的対象の個数等 隣り合う2つの面のなす角 表面積・体積 内接球・辺に接する球・外接球の半径 一辺の長さを とし、以下のように頂点に名前を付けて…
目的は正十二面体、正二十面体の体積を求めることなんですが、ちょっと準備運動として正四面体、正六面体(立方体)、正八面体の体積等を求めていきす。 幾何学的対象の個数等 隣り合う2つの面のなす角 表面積 体積 内接球・辺に接する球・外接球の半径 一辺…
前回、一辺の長さが の正多角形の面積を求めました。 そのとき、ついでに重心と頂点との交点との距離 も求めましたが、これはこの正多角形の外接円の半径ともなってました。 今回は同じ正多角形の内接円の半径 を求めます*1。方法その1上図より、直角三角形 …
正多角形の面積を求めます。 高校数学の問題集に載ってるレベルの問題です。正 角形の1辺の長さを 、重心(正 角形の外心と一致する) O と頂点の距離を (これは外接円の半径でもある)とします: 図中の点 A, B は正 角形の隣り合う頂点、点 M は辺 AB の…
ちょっと後日使うので36°の三角比の値を求めてみます。 高校数学レベルの問題。 ここでは正五角形を使って図形的に求める幾何学的方法と、36°が満たす三角方程式を解く代数的方法代を見ていきます。幾何学的方法1辺の長さが1の正五角形を考えます。 対角線の…
以前の記事「オイラーの公式と三角関数の加法定理」でオイラーの公式 から三角関数の加法定理や倍角、三倍角の公式を導きましたが、同様にして積和の公式、和積の公式も導けるのでやってみます。積和の公式まずは和積の公式。 これは三角関数の積を和に変換…
初項と漸化式が で与えられる数列 の一般項を得る方法を見ていきましょう。 ただし は の何らかの関数です。解法数列 の階差数列を とします: このとき漸化式より となり、階差数列の一般項は分かりました。 ここで、以前導いた、階差数列から元の数列を求…
前回の記事で、以下のような級数の双対性を導きました: この双対性をちょっこっと一般化してみます。 説明のため、この級数を と置きましょう: このとき、級数の双対性は と書けます。その1まずは を整数(ただし )として以下のような形の級数について、…
双曲線関数の公式を見ていくシリーズ(目次)。 前回の微分に続き、今回は双曲線関数の積分を見ていきます。 微分の場合と同様に、基本は指数関数の積分 です。 なお、積分定数は省略します。 は常に正なので、最後の行では絶対値を落としてます。 公式まと…
双曲線関数の公式を見ていくシリーズ(目次)。 そろそろ数学IIIの範囲に入っていきましょう。 実質的に微分を行う関数は指数関数のみです。 双曲線関数は指数関数によって以下のように定義されているのでした: この定義式を微分していきます。 虚数単位が…
双曲線関数の公式を見ていくシリーズ(目次)。 以前に双曲線関数の加法定理を導きましたが、 の加法定理は積和の公式を使うと別の形にまとめることができます。 三角関数の場合と同様にして これまた三角関数の場合と同様に、 の置き換えをして負の引数の公…
双曲線関数の公式を見ていくシリーズ(目次)。 今回は双曲線関数の和積の公式を見ていきます。 和積の公式は前回導いた積和の公式を逆に解いただけの公式です。 双曲線関数の場合も三角関数の場合と同様です。 積和の公式 に対して三角関数の場合に導入した…
高校数学の数列に出てくる以下のような級数(和)の計算を考えましょう: この級数を計算するには、各項が以下のように部分分数分解できることを使います: これを用いて Sn は以下のように計算するのでした: さて、この計算で和を書き下した2行目は複数の…
双曲線関数の公式を見ていくシリーズ(目次)。 今回は双曲線関数の積和の公式を見ていきます。 積和の公式とは、双曲線関数の積( など)を和( など)で表す公式です。 元になっているのはやはり以前導いた加法定理です。 双曲線関数の積和の公式も三角関…
双曲線関数の公式を見ていくシリーズ(目次)。 今回は双曲線関数の合成を見ていきます。 三角関数の場合と同様、合成で使うのはやはり加法定理です。 加法定理を最初に学習したときは、それを使って展開もしくは分解のようなことを行いますが、合成は逆に複…
双曲線関数の公式を見ていくシリーズ(目次)。 今回は双曲線関数の三倍角の公式を見ていきます。 双曲線関数の三倍角の公式も三角関数の場合と導き方は同様です。正弦 余弦 正接 三角関数の三倍角の公式と、純虚数の引数を使った方が簡単に導けるかも。公式…
双曲線関数の公式を見ていくシリーズ(目次)。 前回の倍角の公式に続いて、今回は半角の公式を見ていきます。 双曲線関数の半角の公式も、導き方は三角関数の場合とほとんど同じで、使う公式はやはり の倍角の公式です。 まずは の半角の公式を導きましょう…
双曲線関数の公式を見ていくシリーズ(目次)。 今回は加法定理からすぐに導ける倍角の公式を導きます。 双曲線関数は引数が角度じゃないので“倍角”と言っていいのかわからないけど、面倒なので“倍角”の公式で通します。 次回以降の記事も同様。 双曲線関数…
双曲線関数の公式を見ていくシリーズ(目次)。 今回は三角関数でも双曲線関数でも重要な定理である加法定理を見ていきます。三角関数の場合はこちら。双曲線関数の加法定理では、三角関数の加法定理を踏まえて双曲線関数の加法定理を導いてみましょう。 指…